Multiply and divide improper and mixed fractions
(3)

Dexter works out $\left(2 \frac{1}{2}\right)^{2}$

$$
2 \frac{1}{2} \times 2 \frac{1}{2}=\frac{5}{2} \times \frac{5}{2}=\frac{25}{4}=6 \frac{1}{4}
$$

(1)

Dora and Teddy are working out $3 \frac{1}{2} \times \frac{1}{5}$

Dora	
$3 \frac{1}{2} \times \frac{1}{5}$	$=3 \times \frac{1}{5}+\frac{1}{2} \times \frac{1}{5}$
	$=\frac{3}{5}+\frac{1}{10}$
	$=\frac{6}{10}+\frac{1}{10}=\frac{7}{10}$

Whose method do you prefer? Talk about it with a partner.
(2)

Complete the calculations. Show all your workings.
a) $2 \frac{2}{3} \times \frac{1}{3}=\frac{8}{9}$
d) $5 \frac{1}{2} \times 3=16 \frac{1}{2}$
b) $3 \frac{1}{6} \times 2=6 \frac{1}{3}$
e) $3 \times 2 \frac{3}{4}=8 \frac{1}{4}$
c) $5 \times 1 \frac{3}{10}=6 \frac{1}{2}$
f) $2 \times 1 \frac{3}{5} \times 3=9 \frac{3}{5}$

Use the diagram to show that Dexter's answer is correct.

(4) Work out these multiplications.
a) $2 \frac{2}{3} \times 2 \frac{1}{3}=6 \frac{2}{9}$
c) $\frac{9}{10} \times 3 \frac{1}{4}=2 \frac{37}{40}$
b) $3 \frac{5}{6} \times 2 \frac{1}{2}=9 \frac{7}{12}$
a) How does the diagram represent $4 \frac{1}{2} \div \frac{1}{2}=9$?

Discuss it with a partner.
b) How does this diagram represent $4 \frac{1}{2} \div 1 \frac{1}{2}=3$?

Discuss it with a partner
c) Complete the calculations. Use the diagrams to help you.

$$
6 \frac{1}{4} \div 1 \frac{1}{4}=5
$$

$$
5 \frac{1}{3} \div 1 \frac{1}{3}=4
$$Complete the calculations.

a) $3 \frac{1}{2} \div 2=\frac{7}{4}=1 \frac{3}{4}$
c) $3 \frac{1}{2} \div 2 \frac{1}{4}=\frac{14}{9}=1 \frac{5}{9}$
b) $3 \frac{1}{2} \div 2 \frac{1}{2}=\frac{7}{5}=1 \frac{2}{5}$
d) $6 \frac{1}{4} \div 3 \frac{1}{8}=2$
a) How many pieces of wood $1 \frac{3}{4} \mathrm{~m}$ long can be cut from a length of 9 m ?
b) Find the area of a triangle with a base of $3 \frac{5}{8} \mathrm{~cm}$ and perpendicular height of $2 \frac{1}{2} \mathrm{~cm}$.
c) A parallelogram with a base of 3.25 cm has an area of $12.6 \mathrm{~cm}^{2}$ Use fractions to work out the height of the parallelogram.

